Cu₂O室温电调制反射激子光谱

王 宣 王桂芬 张光寅 马根源 张存洲 (南开大学物理系)

提 要

本文用电解液电调制反射谱方法,研究了室温下 Cu₂O 的青系蓝系激子谱。实验结果用最小二乘法对 Aspens 的理论进行了曲线拟合。 将拟合结果与低温和室温下的反射、吸收谱数据进行比较,得到在电解 液电反射谱中,不仅有青系。 系 n=1 的数子效应,而且也包含 n=2 的数子效应。文中也做了不同抛光表 面样品的电反射谱,发现它们有显著不同的光谱特征。 关键词: 数子谱,电调制反射谱,曲线拟合。

一、引 言

近年来,随着光计算机研究的发展,寻找有效的、在室温下能工作的光学双稳态材料是 一项很重要的工在¹¹¹。考虑到 Cu₃O 有很强的激子效应,特别是它在室温下有显著的激子 谱线^[2, 2],所以它是室温激子双稳态器件的重要候选材料之一。因而研究 Cu₃O 的室温激子 效应有着极其重要的意义。

本文报道在室温下测得的 Cu₂O 青系、蓝系激子所在的光谱区(3800~5500 Å)内的电 解液电调制反射谱,并用最小二乘法进行曲线拟合。 从拟合结果区分出叠加在一起的调制 光谱结构,并能精确确定这些结构的参数。通过比较激子和带间跃迁的不同性质,得到了新 的现象。

二、实验及其结果

实验采用普通的电解液电调制反射谱方法。实验装置不再赘述^[4]。本文着重讨论电解 液的选取和样品表面的处理。

对大多数半导体样品(如 Si_Ge、GaAs 等)来说,用 KOI 的 0.1 M 水溶液作电解液电调 制反射谱信号既大又稳定^[53]。对 Cu₂O 样品,也用 KCI 水溶液测量时,虽然信号较大,但很不 稳定。这可能是由于 Cu₂O 在电场的作用下与 KCI 水溶液发生化学反应 的 结果。通过反 复试验发现用 KOI 的甲醇饱和溶液作电解液可以得到较大而且稳定的信号(每小时变化小 于 5%)。

激子电反射谱对样品表面处理的好坏极其敏感^[83]。它要求样品表面有很好化学抛光。 电解液电反射谱对样品表面也有很严格的要求^[53]。这是因为若样品表面存在大量的表面态 将会屏蔽调制电场的作用。对于化学抛光质量不好的表面,仍存在一定数量的缺陷。这时

收稿日期: 1987年6月5日; 收到修改稿日期: 1987年12月14日

激子也同样很难形成。

我们在实验中分别对 Cu₂O 表面进行了机械抛光基础上,用稀硝酸化学抛光和浓 硝 酸 化学抛光。在 3800 ~ 5500 Å 光谱区三种不同抛光样品的电调制反射谱如图 1 所示。从图 1 中可以看出,机械抛光样品比稀硝酸抛光样品,稀硝酸抛光样品比浓硝酸抛光样品的信 号幅度都近似小一个数量级。而且机械抛光样品和稀硝酸抛光样品的电调制反射谱较浓硝 酸抛光样品大大展宽。由此得知,浓硝酸化学抛光 Cu₂O 表面质量最好,稀硝酸次之,机械 抛光质量最差。

浓硝酸抛光样品的电调制反射谱图 1(a) 与文献[6] 中的谐结构很相似。文献[6] 中提

smoothed differenly (a) concentrated nitric acid etching $\langle b \rangle$ dilute

nitrie acid etching and (c) mechanic. (d) is a reflection spectrum of Cu_2O etched by concentrated nitrie acid

出所得到的光谱结构是由于带间跃迁引起的。我们认为得此结论的理由不充分。为了判明图1中光谱结构的归属,我们对所得到的实验曲线用Aspens的电反射谱线形公式^{mn}和文献[8]、[9]中的公式进行了最小二乘法拟合。

Fig. 2 EER spectrum of Cu₂O etched by concentrated nitric acid

考虑到前述理论公式均仅适用于低场条件,故我们的实验都安排在低场条件下进行 的^[53],首先我们假定图 1(a)中 4750 Å 和 4550 Å 附近分别对应一个光谱结构,拟合的结果 如图 2 中虚线所示。显然,只用两个结构是不能说明图 1(a)中的光谱结构。图 2 中实线是 假定存在四个结构拟合的结果。可以看出,它与实验点几乎完全重合。四个结构的波长位 置列在表 1 中。图 1 中圆点为实验结果,实线为拟合结果。图 1(b)、(o)的拟合的结果亦列于 表 1 中,因文献 [12]得出带间跃迁结论的主要依据是低温下 Cu₂O 的激子反射、吸收谱数据 及其温度特性,我们将拟合的结果与文献 [2]、[10]中低温 Cu₂O 光谱数据及文献 [3]中室温 激子反射谱数据进行了比较,均列于表 1 中。为了排除医样品或实验条件不同带来的误差,

			bule-gre	en series		1	bule serie	3	
			n=1	n=2		<i>n</i> = 1	n=2		
	reflection		4805	4732		4 575	4525 (4508)		reference [2]
77 K			4797	4731	4708	4566	4506	4187	reference [5]
			47	50		45 7 5			reference [2]
	absorption		4818	4738					reference [5]
905 K			4824			4609			reference [3]
71 0.80	renection		4 8 0 7			4 610			UV+£65
	Fig. 1(a)		4789	473 8		4599	4545		DC: -0.5 V AC: 1.0 V
	Fig. 2		4789	474 2		4594	4546		DC: 0.7 V AC: 1.5 V
EER			4790	4745		45.4	4547		$DC_{1} = -0.5 V AC_{1} 1.0 V$
	Fig. 1(b)	4908	4785		4715	4€00		4536	$DC_{:} -0.5 V AC_{:} 1.0 V$
	Fig. 1(c)	4895	4788		4692		}	4400	DC: 1.0 V AC: 1.0 V

Table. 1

我们对同一块用浓硝酸化学抛光的样品在 UV-365 紫外,可见,近红外分光光度计上测量了 室温下的反射光谱,如图 1(d)。结果与文献[3]中的数据基本相同,亦列于表 1。从表 1 中 可看出从 77K 到室温, Cu₂O 青系、蓝系激子反射峰约向长波平移 30 Å。实验¹¹¹³表明,在 较弱的电场中激子结构位置几乎不改变。 当电场接近激子的电离能时,激子开始被离化且 向高能(短波)方向移动。假定电调制反射谱较反射谱向短波平移约 10 Å。比较表 1 中的 数据,我们可以初步断定图 1(a)中四个光谱结构分别是价带 Γ_{7}^{+} 和 Γ_{8}^{+} 到导带 Γ_{7}^{+} 间形成的 青系、 系 n=1,2 激子效应。在室温反射谱中,虽然只能观察到 n=1 的激子效应,而 n=2 激子由于温度效应而消除,但由于 n=2 激子有较小的电离能,所以它对调制电场更加敏感, 故在电调制反射谱中有很明显的结构。

在实验中发现直流偏压的大小对电调制反射谱线形和位置影响很小。这是由于样品表面势垒层中的自建电场较外电场大得多的缘故。由于图 1(b)、(c)信号很弱且结构 严 重 展 宽, 拟合结果误差较大。但从表 1 中可以看出在 4900 Å 和 4400 Å 附近较图 1(a)多出两个结构。其中 4400 Å 的结构与文献[12]的结果相吻合, 而 4900 Å 的结构可能是由于杂质或

		θ (degree)	Γ (meV)	E_{g} (Å)	
1	Fig. 2	167	23. 4	4789	etched by concentrated HNO ₃
2		150	26.5	4789	etched by concentrated HNO3
3	Fig. 1(0)	169	19.6	4 790	etched by concentraled HNO3
4	Fig. 1(b)	213	47.0	4785	etched by dilute HNO3
5	Fig. $1(\sigma)$	277	255	4788	smoothed by mechanic (Al ₂ O ₃)

Table 2

表面层干涉的结果。

为了比较三种不同抛光样品中激子的行为,在表2中列出了由更线拟合得出的青系 n=1激子的展宽参数 Γ 位相因子 θ 和能量位置 E₀ 在三种不同抛光样品电调制 反射 谱中 的值。从表2中可以看出,随着样品表面缺陷的增加激子结构不但振幅减弱,而且加宽参数 急剧增加。使得激子结构变得很模糊,直至分辨不出。

三、理论分析

1. 电场、温度、表面缺陷对激子光谱的影响

为了理解电场对激子的影响,我们看一下 Cu2O 黄系激子在直流电场中的吸收谱[13]。如

图 3 所示,当电场为零时只存在 P 态(n=2到 n=6)跃迁。当加上直流 电流电场后,在 nP 线间开始出现弱 的吸收线。随着电场的增加,这些弱 吸收线加强,同时 nP 线展宽并减弱。 一般来说电场对粒子的影响为:当加 上较弱的电场时,有可能出现一些零 电场时观察不到的谱线。当电场较强 时,激子线被展宽、减弱同时有斯塔克 移动。激子离化能愈小这种效应愈明 显。

温度对激子的影响与电场相类似。 在室温下,大多数半导体材料由于激子被离化使激子谱续很宽,所以很难观察到激子效应。对一些激子电离能较大的半导体如 Cu₂O 等,在室

温下激子被展宽,但不能被完全离化,所以仍能观察到 明显的激子效应。一般激子谱有负的温度系数、即温 度升高谱线向长波移动。

Wannier 激子具有较大的半径(较晶格常数约大一、二个数量级),为形成激子,晶体表面必须在几个晶 胞以上范围内有序。所以,要想观察到激子的反射谱、 晶体表面不但要有好的机械抛光外,还要进行高质量 的化学抛光^[3,10]。

由于激子对电场很敏感,所以用电调制谱研究激子性质是一种很灵敏的方法。电调制反射激子光谱的 唯像描述如图4所示。实线是零电场时的激子反射 谱,虚线是加电场后的激子反射谱。加电场后激子反 射谱线被展宽并有斯塔克移动。图4下部为反射率的 相对改变,(4R/R)即电调制反射谱。可以看出电反

Fig. 4 A schematic diagram of excitonic electroreflectance spectrum

射谱较普通反射谱分辨率要大得多。按照 Aspens 的理论, 激子电反射谱是普通反射谱的一

阶微分线型印。

2. 电调制反射谱的Aspens 理论和一般函数线型理论

低场电反射谱能精确地确定带间跃迁和激子跃迁能量。Aspens 提出带间跃迁电反射 谱是能量的三阶微分^m,其线型表达式为

$$\frac{\Delta R}{R} = \sum_{j=1}^{p} \operatorname{Re}[c_{j} \exp(i\theta_{j}) (E - E_{gj} + i\Gamma_{j})^{-m_{j}}]_{\circ}$$
(1)

对于激子跃迁电反射谱是能量的一阶微分,线型仍用公式(1)描述,只是其中的 m 值不同。 (1)式中p为结构数, c 和 θ 分别为振幅和位相因子; E_o 为光谱结构能量位置; Γ 为展宽参数。对二维和三维临界点 m 分别等于 3 和 2.5。对激子 跃 迁 m 等于 2。 E_o 的 确定 与 m 的取值无关, m 值只影响 Γ 的取值。(1)式能很好地适用于表面无缺陷半导体样品的低场 电反射谱。

近年来,为了解释表面存在大量缺陷态半导体的电反射谱, Paul等人^{(3,91}发展了 Aspens 的三阶微分理论提出,对表面有缺陷态的半导体样品的电反射谱,其中不仅包含能 量的三阶微分同时也包含能量的二阶和一阶微分成份。对三维临界点其线型表达式为

$$L(E) = \sum_{j=1}^{r} c_{j} E^{-2} [(\hbar \Omega_{j})^{3} L(E, 5/2) - 4 \Delta \sigma_{j}^{2} L(E, 3/2) - 4 \Delta E_{j} L(E, 1/2)], \qquad (2)$$

式中 L(E, m) = Re $[exp(i\theta)(E - E_0 + i\Gamma)^{-m}]$, L(E, 3/2)和 L(E, 1/2)表示二阶和一阶 微分。从(2)式可看出,若 $\Delta o^2 = \Delta E = 0$ 则(2)式就简化为(1)式。若半导体材料内部存在很 强的应力(如外延层与衬底间)和表面缺陷,则 ΔE 就很大,反之 ΔE 就很小或可以忽略。对 高掺杂样品 Δo^2 很大。尤其是当样品内有大量缺陷态时, ΔE 和 Δo^2 都会很大。对于浓 硝酸抛光的 Cu₂O 样品表面缺陷可以忽略,所以其电调制反射谱可以用公式(1) 拟合。对于稀 硝酸和机械抛光样品表面存在大量的缺陷,故只能用(2)式拟合。

四、讨 论

在以往研究激子的工作中,大部分是低温下进行的。 这是因为室温下大多数半导体材 料观察不到激子效应。 为了能在室温下应用激子的光学非线性,研究一些激子电离能较大 的半导体材料的室温激子效应是很有必要的。

在低温下 Cu₂O 能观察到有四个线系的激子光谱。它们分布在几乎整个可见光谱 区。 由于黄、绿系激子光谱区 Cu₂O 反射率很小,所以用电反射方法没有观测到激子效应。带边 激子对透射应用更加有利,所以用电吸收谱方法研究黄系激子的性质是有必要进行的。

参考文献

- [1] D. S. Chemla; J. O. S. A. (B), 1985, 2, No. 7 (Jul), 1134~1143.
- [2] S. Brahms, S. Nikitine; Solid State Commun., 1965, 3, No. 8 (Aug), 209~212.
- [3] 张光寅等; 《物理学报》, 1965, 21, No. 2 (Feb), 324~327。
- [4] 王桂芬等;《光学与光谱技术》, 1986, No. 1 (Jan), 49~54。
- [5] M. Cardona et al.; Phys. Rev., 1967, 154, No. 3 (Feb), 696~720.
- [6] S. N. Shestatskii, V. V. Sobolev; Phys. Stat. Sol., 1963, 28, No. 2 (Apr), K131~123.
- [7] D. E. Aspens; Surface Sci., 1973, 37 (Jun), 418~442.

|--|

[8] P. M. Raoccah et al.; Phys Rev. Lett., 1984, 53, No. 20 (Nov), 1958~1961.

[9] A. Ksendzov et al.; Appl. Phys. Lett., 1986, 49, No. 11 (Sep), 648~650.

- [11] J. Bordas, E. A. Daris; Surface Sci., 1973, 37, (Jun), 828~835.
- [12] S. N. Shestatskii, V. V. Sobolev; Phys. Stat. Sol., 1968, 32, No. 1 (Mar), K109~111.

[13] S. Nikitine, J. B. Grun et al.; «Symp. 4th Conf. Molecular Spectroscopy, Bologna, 1959»

Excitonic electroreflectance spectrum of cuprous oxcide at room temperature

8 卷

WANG XUAN WANG GUIFEN ZHANG GUANGYIN MA GENYUAN AND ZHANG CHUENZUO (Department of Physics, Nankai University, Tianjin)

(Received 5 June 1987; revised 14 December 1987)

Abstract

We have studied the blue-green and blue exciton series spectra of cuprous oxide (Cu_2O) with electrolyte electroreflectance method at room temperature and performed experimental results to be the least-square fit to Aspnes theory. Comparing the fit results with the experimental results of reflection and absorption spectra at low and room temperature, we get that the electaoreflectance spectra of Cu_2O include not only n=1 exciton effect of blue-green and blue series but also n=2 exciton effect. The electroreflectance spectra of Cu_2O with different smoothing are measured and the obvious spectral feature different is observed.

Key words: excitonic spectra; electroreflectance spectrum; least-square fit.

^[10] E. F. Gross, Chang Kuang-Yin; Soviet Phys. Solid State, 1962, 4, No. 2 (Jul), 186~190.